Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 336
1.
J Virol ; 98(2): e0168223, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38289117

Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.


Coronavirus 3C Proteases , Coronavirus Infections , Deltacoronavirus , Interferon Type I , Intracellular Signaling Peptides and Proteins , Swine Diseases , Swine , Animals , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Deltacoronavirus/enzymology , Deltacoronavirus/metabolism , Deltacoronavirus/pathogenicity , Immunity, Innate , Interferon Type I/antagonists & inhibitors , Interferon Type I/biosynthesis , Interferon Type I/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Proteolysis , Signal Transduction/immunology , Swine/immunology , Swine/virology , Swine Diseases/immunology , Swine Diseases/metabolism , Swine Diseases/virology , Transcription Factors/metabolism , Viral Zoonoses/immunology , Viral Zoonoses/virology , Virus Replication
2.
Nature ; 623(7988): 803-813, 2023 Nov.
Article En | MEDLINE | ID: mdl-37938781

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Autoantibodies , Genetic Predisposition to Disease , Interferon Type I , NF-kappa B , Humans , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , Gain of Function Mutation , Heterozygote , I-kappa B Proteins/deficiency , I-kappa B Proteins/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Loss of Function Mutation , NF-kappa B/deficiency , NF-kappa B/genetics , NF-kappa B p52 Subunit/deficiency , NF-kappa B p52 Subunit/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Thymus Gland/abnormalities , Thymus Gland/immunology , Thymus Gland/pathology , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , AIRE Protein , NF-kappaB-Inducing Kinase
3.
J Virol ; 97(11): e0079523, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37902401

IMPORTANCE: African swine fever virus (ASFV), the only known DNA arbovirus, is the causative agent of African swine fever (ASF), an acutely contagious disease in pigs. ASF has recently become a crisis in the pig industry in recent years, but there are no commercially available vaccines. Studying the immune evasion mechanisms of ASFV proteins is important for the understanding the pathogenesis of ASFV and essential information for the development of an effective live-attenuated ASFV vaccines. Here, we identified ASFV B175L, previously uncharacterized proteins that inhibit type I interferon signaling by targeting STING and 2'3'-cGAMP. The conserved B175L-zf-FCS motif specifically interacted with both cGAMP and the R238 and Y240 amino acids of STING. Consequently, this interaction interferes with the interaction of cGAMP and STING, thereby inhibiting downstream signaling of IFN-mediated antiviral responses. This novel mechanism of B175L opens a new avenue as one of the ASFV virulent genes that can contribute to the advancement of ASFV live-attenuated vaccines.


African Swine Fever Virus , African Swine Fever , Interferon Type I , Membrane Proteins , Nucleotides, Cyclic , Swine , Viral Proteins , Animals , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever Virus/chemistry , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , African Swine Fever Virus/pathogenicity , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nucleotides, Cyclic/antagonists & inhibitors , Nucleotides, Cyclic/metabolism , Swine/immunology , Swine/virology , Vaccines, Attenuated/immunology , Viral Proteins/metabolism , Viral Vaccines/immunology , Host Microbial Interactions
4.
Exp Neurol ; 367: 114470, 2023 09.
Article En | MEDLINE | ID: mdl-37327964

Clinical evidence indicates that major depression is a common comorbidity of chronic pain, including neuropathic pain; however, the cellular basis for chronic pain-mediated major depression remains unclear. Mitochondrial dysfunction induces neuroinflammation and has been implicated in various neurological diseases, including depression. Nevertheless, the relationship between mitochondrial dysfunction and anxiodepressive-like behaviors in the neuropathic pain state remains unclear. The current study examined whether hippocampal mitochondrial dysfunction and downstream neuroinflammation are involved in anxiodepressive-like behaviors in mice with neuropathic pain, which was induced by partial sciatic nerve ligation (PSNL). At 8 weeks after surgery, there was decreased levels of mitochondrial damage-associated molecular patterns, such as cytochrome c and mitochondrial transcription factor A, and increased level of cytosolic mitochondrial DNA in the contralateral hippocampus, suggesting the development of mitochondrial dysfunction. Type I interferon (IFN) mRNA expression in the hippocampus was also increased at 8 weeks after PSNL surgery. The restoration of mitochondrial function by curcumin blocked the increased cytosolic mitochondrial DNA and type I IFN expression in PSNL mice and improved anxiodepressive-like behaviors. Blockade of type I IFN signaling by anti-IFN alpha/beta receptor 1 antibody also improved anxiodepressive-like behaviors in PSNL mice. Together, these findings suggest that neuropathic pain induces hippocampal mitochondrial dysfunction followed by neuroinflammation, which may contribute to anxiodepressive-behaviors in the neuropathic pain state. Improving mitochondrial dysfunction and inhibiting type I IFN signaling in the hippocampus might be a novel approach to reducing comorbidities associated with neuropathic pain, such as depression and anxiety.


Anxiety , Depression , Interferon Type I , Mitochondria , Neuralgia , Animals , Male , Mice , Anxiety/complications , Anxiety/drug therapy , Anxiety/metabolism , Chronic Pain/complications , Chronic Pain/metabolism , Chronic Pain/pathology , Chronic Pain/psychology , Curcumin/pharmacology , Curcumin/therapeutic use , Cytosol/drug effects , Cytosol/metabolism , Depression/complications , Depression/drug therapy , Depression/metabolism , DNA, Mitochondrial/metabolism , Frontal Lobe/metabolism , Frontal Lobe/pathology , Hippocampus/drug effects , Hippocampus/immunology , Hippocampus/metabolism , Hippocampus/pathology , Interferon Type I/antagonists & inhibitors , Interferon Type I/genetics , Interferon Type I/metabolism , Microglia/drug effects , Microglia/immunology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Neuralgia/complications , Neuralgia/metabolism , Neuralgia/pathology , Neuralgia/psychology , Neuroinflammatory Diseases/complications , Sciatic Nerve/surgery
5.
J Virol ; 96(17): e0070622, 2022 09 14.
Article En | MEDLINE | ID: mdl-36000839

Rotavirus infects intestinal epithelial cells and is the leading cause of gastroenteritis in infants worldwide. Upon viral infection, intestinal cells produce type I and type III interferons (IFNs) to alert the tissue and promote an antiviral state. These two types of IFN bind to different receptors but induce similar pathways that stimulate the activation of interferon-stimulated genes (ISGs) to combat viral infection. In this work, we studied the spread of a fluorescent wild-type (WT) SA11 rotavirus in human colorectal cancer cells lacking specific interferon receptors and compared it to that of an NSP1 mutant rotavirus that cannot interfere with the host intrinsic innate immune response. We could show that the WT rotavirus efficiently blocks the production of type I IFNs but that type III IFNs are still produced, whereas the NSP1 mutant rotavirus allows the production of both. Interestingly, while both exogenously added type I and type III IFNs could efficiently protect cells against rotavirus infection, endogenous type III IFNs were found to be key to limit infection of human intestinal cells by rotavirus. By using a fluorescent reporter cell line to highlight the cells mounting an antiviral program, we could show that paracrine signaling driven by type III IFNs efficiently controls the spread of both WT and NSP1 mutant rotavirus. Our results strongly suggest that NSP1 efficiently blocks the type I IFN-mediated antiviral response; however, its restriction of the type III IFN-mediated one is not sufficient to prevent type III IFNs from partially inhibiting viral spread in intestinal epithelial cells. Additionally, our findings further highlight the importance of type III IFNs in controlling rotavirus infection, which could be exploited as antiviral therapeutic measures. IMPORTANCE Rotavirus is one of the most common causes of gastroenteritis worldwide. In developing countries, rotavirus infections lead to more than 200,000 deaths in infants and children. The intestinal epithelial cells lining the gastrointestinal tract combat rotavirus infection by two key antiviral compounds known as type I and III interferons. However, rotavirus has developed countermeasures to block the antiviral actions of the interferons. In this work, we evaluated the arms race between rotavirus and type I and III interferons. We determined that although rotavirus could block the induction of type I interferons, it was unable to block type III interferons. The ability of infected cells to produce and release type III interferons leads to the protection of the noninfected neighboring cells and the clearance of rotavirus infection from the epithelium. This suggests that type III interferons are key antiviral agents and could be used to help control rotavirus infections in children.


Epithelial Cells , Interferons , Intestinal Mucosa , Rotavirus Infections , Rotavirus , Antiviral Agents/immunology , Child , Epithelial Cells/immunology , Epithelial Cells/virology , Gastroenteritis/virology , Humans , Immunity, Innate , Infant , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Interferons/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/virology , Mutation , Rotavirus/genetics , Rotavirus/growth & development , Rotavirus/immunology , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Viral Nonstructural Proteins/genetics
6.
J Virol ; 96(17): e0072322, 2022 09 14.
Article En | MEDLINE | ID: mdl-35975999

The production of type I interferon (IFN) is the hallmark of the innate immune response. Most, if not all, mammalian viruses have a way to circumvent this response. Fundamental knowledge on viral evasion of innate immune responses may facilitate the design of novel antiviral therapies. To investigate how human metapneumovirus (HMPV) interacts with the innate immune response, recombinant viruses lacking G, short hydrophobic (SH), or M2-2 protein expression were assessed for IFN induction in A549 cells. HMPV lacking G or SH protein expression induced similarly low levels of IFN, compared to the wild-type virus, whereas HMPV lacking M2-2 expression induced significantly more IFN than the wild-type virus. However, sequence analysis of the genomes of M2-2 mutant viruses revealed large numbers of mutations throughout the genome. Over 70% of these nucleotide substitutions were A-to-G and T-to-C mutations, consistent with the properties of the adenosine deaminase acting on RNA (ADAR) protein family. Knockdown of ADAR1 by CRISPR interference confirmed the role of ADAR1 in the editing of M2-2 deletion mutant virus genomes. More importantly, Northern blot analyses revealed the presence of defective interfering RNAs (DIs) in M2-2 mutant viruses and not in the wild-type virus or G and SH deletion mutant viruses. DIs are known to be potent inducers of the IFN response. The presence of DIs in M2-2 mutant virus stocks and hypermutated virus genomes interfere with studies on HMPV and the innate immune response and should be addressed in future studies. IMPORTANCE Understanding the interaction between viruses and the innate immune response is one of the barriers to the design of antiviral therapies. Here, we investigated the role of the G, SH, and M2-2 proteins of HMPV as type I IFN antagonists. In contrast to other studies, no IFN-antagonistic functions could be observed for the G and SH proteins. HMPV with a deletion of the M2-2 protein did induce type I IFN production upon infection of airway epithelial cells. However, during generation of virus stocks, these viruses rapidly accumulated DIs, which are strong activators of the type I IFN response. Additionally, the genomes of these viruses were hypermutated, which was prevented by generating stocks in ADAR knockdown cells, confirming a role for ADAR in hypermutation of HMPV genomes or DIs. These data indicate that a role of the HMPV M2-2 protein as a bona fide IFN antagonist remains elusive.


Immunity, Innate , Interferon Type I , Metapneumovirus , Viral Proteins , A549 Cells , Adenosine Deaminase , Antiviral Agents/metabolism , Humans , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Metapneumovirus/genetics , Metapneumovirus/metabolism , RNA-Binding Proteins , Viral Proteins/genetics , Viral Proteins/metabolism
7.
Nature ; 607(7920): 776-783, 2022 07.
Article En | MEDLINE | ID: mdl-35859176

Mutations of the ADAR1 gene encoding an RNA deaminase cause severe diseases associated with chronic activation of type I interferon (IFN) responses, including Aicardi-Goutières syndrome and bilateral striatal necrosis1-3. The IFN-inducible p150 isoform of ADAR1 contains a Zα domain that recognizes RNA with an alternative left-handed double-helix structure, termed Z-RNA4,5. Hemizygous ADAR1 mutations in the Zα domain cause type I IFN-mediated pathologies in humans2,3 and mice6-8; however, it remains unclear how the interaction of ADAR1 with Z-RNA prevents IFN activation. Here we show that Z-DNA-binding protein 1 (ZBP1), the only other protein in mammals known to harbour Zα domains9, promotes type I IFN activation and fatal pathology in mice with impaired ADAR1 function. ZBP1 deficiency or mutation of its Zα domains reduced the expression of IFN-stimulated genes and largely prevented early postnatal lethality in mice with hemizygous expression of ADAR1 with mutated Zα domain (Adar1mZα/- mice). Adar1mZα/- mice showed upregulation and impaired editing of endogenous retroelement-derived complementary RNA reads, which represent a likely source of Z-RNAs activating ZBP1. Notably, ZBP1 promoted IFN activation and severe pathology in Adar1mZα/- mice in a manner independent of RIPK1, RIPK3, MLKL-mediated necroptosis and caspase-8-dependent apoptosis, suggesting a novel mechanism of action. Thus, ADAR1 prevents endogenous Z-RNA-dependent activation of pathogenic type I IFN responses by ZBP1, suggesting that ZBP1 could contribute to type I interferonopathies caused by ADAR1 mutations.


Adenosine Deaminase , Interferon Type I , RNA-Binding Proteins , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Apoptosis , Caspase 8/metabolism , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Mice , Mutation , Necroptosis , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
J Virol ; 96(8): e0003722, 2022 04 27.
Article En | MEDLINE | ID: mdl-35389264

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose an enormous threat to economic activity and public health worldwide. Previous studies have shown that the nonstructural protein 5 (nsp5, also called 3C-like protease) of alpha- and deltacoronaviruses cleaves Q231 of the NF-κB essential modulator (NEMO), a key kinase in the RIG-I-like receptor pathway, to inhibit type I interferon (IFN) production. In this study, we found that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleaved NEMO at multiple sites (E152, Q205, and Q231). Notably, SARS-CoV-2 nsp5 exhibited a stronger ability to cleave NEMO than SARS-CoV nsp5. Sequence and structural alignments suggested that an S/A polymorphism at position 46 of nsp5 in SARS-CoV versus SARS-CoV-2 may be responsible for this difference. Mutagenesis experiments showed that SARS-CoV-2 nsp5 (S46A) exhibited poorer cleavage of NEMO than SARS-CoV-2 nsp5 wild type (WT), while SARS-CoV nsp5 (A46S) showed enhanced NEMO cleavage compared with the WT protein. Purified recombinant SARS-CoV-2 nsp5 WT and SARS-CoV nsp5 (A46S) proteins exhibited higher hydrolysis efficiencies than SARS-CoV-2 nsp5 (S46A) and SARS-CoV nsp5 WT proteins in vitro. Furthermore, SARS-CoV-2 nsp5 exhibited stronger inhibition of Sendai virus (SEV)-induced interferon beta (IFN-ß) production than SARS-CoV-2 nsp5 (S46A), while introduction of the A46S substitution in SARS-CoV nsp5 enhanced suppression of SEV-induced IFN-ß production. Taken together, these data show that S46 is associated with the catalytic activity and IFN antagonism by SARS-CoV-2 nsp5. IMPORTANCE The nsp5-encoded 3C-like protease is the main coronavirus protease, playing a vital role in viral replication and immune evasion by cleaving viral polyproteins and host immune-related molecules. We showed that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleave the NEMO at multiple sites (E152, Q205, and Q231). This specificity differs from NEMO cleavage by alpha- and deltacoronaviruses, demonstrating the distinct substrate recognition of SARS-CoV-2 and SARS-CoV nsp5. Compared with SARS-CoV nsp5, SARS-CoV-2 nsp5 encodes S instead of A at position 46. This substitution is associated with stronger catalytic activity, enhanced cleavage of NEMO, and increased interferon antagonism of SARS-CoV-2 nsp5. These data provide new insights into the pathogenesis and transmission of SARS-CoV-2.


Coronavirus 3C Proteases , Interferon Type I , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Antiviral Agents , COVID-19/immunology , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Humans , Immune Evasion/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/metabolism , Severe acute respiratory syndrome-related coronavirus/enzymology , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Virus Replication/genetics
9.
Viruses ; 13(12)2021 12 04.
Article En | MEDLINE | ID: mdl-34960709

Type I interferons (IFNs) are cytokines with both antiviral properties and protective roles in innate immune responses to viral infection. They induce an antiviral cellular state and link innate and adaptive immune responses. Yet, viruses have evolved different strategies to inhibit such host responses. One of them is the existence of viral proteins which subvert type I IFN responses to allow quick and successful viral replication, thus, sustaining the infection within a host. We propose mathematical models to characterise the intra-cellular mechanisms involved in viral protein antagonism of type I IFN responses, and compare three different molecular inhibition strategies. We study the Ebola viral protein, VP35, with this mathematical approach. Approximate Bayesian computation sequential Monte Carlo, together with experimental data and the mathematical models proposed, are used to perform model calibration, as well as model selection of the different hypotheses considered. Finally, we assess if model parameters are identifiable and discuss how such identifiability can be improved with new experimental data.


Ebolavirus , Interferon Type I/antagonists & inhibitors , Interferon Type I/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Animals , Bayes Theorem , Ebolavirus/pathogenicity , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Immunity, Innate , Macaca mulatta , Models, Biological , Monte Carlo Method
10.
Viruses ; 13(12)2021 12 06.
Article En | MEDLINE | ID: mdl-34960717

The evasion of the Interferon response has important implications in Zika virus (ZIKV) disease. Mutations in ZIKV viral protein NS4B, associated with modulation of the interferon (IFN) system, have been linked to increased pathogenicity in animal models. In this study, we unravel ZIKV NS4B as antagonist of the IFN signaling cascade. Firstly, we reported the genomic characterization of NS4B isolated from a strain of the 2016 outbreak, ZIKV Brazil/2016/INMI1, and we predicted its membrane topology. Secondly, we analyzed its phylogenetic correlation with other flaviviruses, finding a high similarity with dengue virus 2 (DEN2) strains; in particular, the highest conservation was found when NS4B was aligned with the IFN inhibitory domain of DEN2 NS4B. Hence, we asked whether ZIKV NS4B was also able to inhibit the IFN signaling cascade, as reported for DEN2 NS4B. Our results showed that ZIKV NS4B was able to strongly inhibit the IFN stimulated response element and the IFN-γ-activated site transcription, blocking IFN-I/-II responses. mRNA expression levels of the IFN stimulated genes ISG15 and OAS1 were also strongly reduced in presence of NS4B. We found that the viral protein was acting by suppressing the STAT1 phosphorylation and consequently blocking the nuclear transport of both STAT1 and STAT2.


Interferon Type I/metabolism , Interferon-gamma/metabolism , STAT1 Transcription Factor/metabolism , Viral Nonstructural Proteins/metabolism , Zika Virus Infection/virology , Zika Virus/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , Active Transport, Cell Nucleus , Amino Acid Sequence , Animals , Cell Nucleus/metabolism , Chlorocebus aethiops , Cytokines/genetics , HEK293 Cells , Humans , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Interferon-beta/biosynthesis , Interferon-gamma/antagonists & inhibitors , Interferon-gamma/immunology , Phosphorylation , Phylogeny , Protein Conformation , Response Elements , Signal Transduction , Ubiquitins/genetics , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Zika Virus/chemistry , Zika Virus/isolation & purification , Zika Virus/pathogenicity
11.
Nature ; 600(7887): 138-142, 2021 12.
Article En | MEDLINE | ID: mdl-34759314

Pathogens use virulence factors to inhibit the immune system1. The guard hypothesis2,3 postulates that hosts monitor (or 'guard') critical innate immune pathways such that their disruption by virulence factors provokes a secondary immune response1. Here we describe a 'self-guarded' immune pathway in human monocytes, in which guarding and guarded functions are combined in one protein. We find that this pathway is triggered by ICP0, a key virulence factor of herpes simplex virus type 1, resulting in robust induction of anti-viral type I interferon (IFN). Notably, induction of IFN by ICP0 is independent of canonical immune pathways and the IRF3 and IRF7 transcription factors. A CRISPR screen identified the ICP0 target MORC34 as an essential negative regulator of IFN. Loss of MORC3 recapitulates the IRF3- and IRF7-independent IFN response induced by ICP0. Mechanistically, ICP0 degrades MORC3, which leads to de-repression of a MORC3-regulated DNA element (MRE) adjacent to the IFNB1 locus. The MRE is required in cis for IFNB1 induction by the MORC3 pathway, but is not required for canonical IFN-inducing pathways. As well as repressing the MRE to regulate IFNB1, MORC3 is also a direct restriction factor of HSV-15. Our results thus suggest a model in which the primary anti-viral function of MORC3 is self-guarded by its secondary IFN-repressing function-thus, a virus that degrades MORC3 to avoid its primary anti-viral function will unleash the secondary anti-viral IFN response.


Adenosine Triphosphatases/immunology , DNA-Binding Proteins/immunology , Models, Immunological , Virulence Factors/immunology , Adenosine Triphosphatases/deficiency , Adenosine Triphosphatases/metabolism , CRISPR-Cas Systems , Cell Line , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Gene Editing , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Humans , Immediate-Early Proteins/immunology , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Type I/antagonists & inhibitors , Interferon Type I/genetics , Interferon Type I/immunology , Monocytes/immunology , Receptor, Interferon alpha-beta , Repressor Proteins/deficiency , Repressor Proteins/immunology , Repressor Proteins/metabolism , Response Elements/genetics , Ubiquitin-Protein Ligases/immunology
12.
Genome Biol ; 22(1): 297, 2021 10 22.
Article En | MEDLINE | ID: mdl-34686207

BACKGROUND: Rhinoviruses (RVs) cause more than half of common colds and, in some cases, more severe diseases. Functional genomics analyses of RVs using siRNA or genome-wide CRISPR screen uncovered a limited set of host factors, few of which have proven clinical relevance. RESULTS: Herein, we systematically compare genome-wide CRISPR screen and surface protein-focused CRISPR screen, referred to as surfaceome CRISPR screen, for their efficiencies in identifying RV host factors. We find that surfaceome screen outperforms the genome-wide screen in the success rate of hit identification. Importantly, using the surfaceome screen, we identify olfactomedin-like 3 (OLFML3) as a novel host factor of RV serotypes A and B, including a clinical isolate. We find that OLFML3 is a RV-inducible suppressor of the innate immune response and that OLFML3 antagonizes type I interferon (IFN) signaling in a SOCS3-dependent manner. CONCLUSION: Our study suggests that RV-induced OLFML3 expression is an important mechanism for RV to hijack the immune system and underscores surfaceome CRISPR screen in identifying viral host factors.


CRISPR-Cas Systems , Glycoproteins/metabolism , Interferon Type I/antagonists & inhibitors , Rhinovirus/physiology , Genome, Human , Glycoproteins/physiology , HeLa Cells , Humans , Immunity, Innate , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein/metabolism , rab5 GTP-Binding Proteins/physiology
13.
J Virol ; 95(20): e0079321, 2021 09 27.
Article En | MEDLINE | ID: mdl-34379505

Both type I and III interferons (IFNs) play a crucial role in host antiviral response by activating the JAK/STAT (Janus kinase/signal transducer and activator of transcription) signaling pathway to trigger the expression of antiviral IFN-stimulated genes (ISGs). We report that the porcine alphaherpesvirus pseudorabies virus (PRV) triggers proteasomal degradation of the key Janus kinases Jak1 and to a lesser extent Tyk2, thereby inhibiting both type I and III IFN-induced STAT1 phosphorylation and suppressing IFN-induced expression of ISGs. UV-inactivated PRV did not interfere with IFN signaling. In addition, deletion of the EP0 gene from the PRV genome or inhibition of viral genome replication did not affect PRV-induced inhibition of IFN signaling. To our knowledge, this is the first report describing Janus kinase degradation by alphaherpesviruses. These findings thus reveal a novel alphaherpesvirus evasion mechanism of type I and type III IFNs. IMPORTANCE Type I and III interferons (IFNs) trigger signaling via Janus kinases that phosphorylate and activate signal transducer and activator of transcription (STAT) transcription factors, leading to the expression of antiviral interferon-stimulated genes (ISGs) that result in an antiviral state of host cells. Viruses have evolved various mechanisms to evade this response. Our results indicate that an alphaherpesvirus, the porcine pseudorabies virus (PRV), inhibits both type I and III IFN signaling pathways by triggering proteasome-dependent degradation of the key Janus kinases Jak1 and Tyk2 and consequent inhibition of STAT1 phosphorylation and suppression of ISG expression. Moreover, we found that this inhibition is not caused by incoming virions and does not depend on expression of the viral EP0 protein or viral true late proteins. These data for the first time address alphaherpesvirus evasion of type III IFN-mediated signaling and reveal a previously uncharacterized alphaherpesvirus mechanism of IFN evasion via proteasomal degradation of Janus kinases.


Herpesvirus 1, Suid/metabolism , Janus Kinases/metabolism , Animals , Antiviral Agents/pharmacology , Cell Line , Herpesvirus 1, Suid/genetics , Herpesvirus 1, Suid/pathogenicity , Humans , Interferon Type I/antagonists & inhibitors , Interferon Type I/metabolism , Interferons/antagonists & inhibitors , Interferons/metabolism , Janus Kinase 1/metabolism , Janus Kinases/physiology , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteolysis , STAT1 Transcription Factor/metabolism , Signal Transduction/physiology , Swine , TYK2 Kinase/metabolism , Viral Proteins/metabolism , Virus Replication/drug effects , Interferon Lambda
14.
J Immunother Cancer ; 9(7)2021 07.
Article En | MEDLINE | ID: mdl-34321273

BACKGROUND: Modified vaccinia virus Ankara (MVA) are genetically engineered non-replicating viral vectors. Intratumoral administration of MVA induces a cyclic GMP-AMP synthase-mediated type I interferon (IFN) response and the production of high levels of the transgenes engineered into the viral genome such as tumor antigens to construct cancer vaccines. Although type I IFNs are essential for establishing CD8-mediated antitumor responses, this cytokine family may also give rise to immunosuppressive mechanisms. METHODS: In vitro assays were performed to evaluate the activity of simvastatin and atorvastatin on type I IFN signaling and on antigen presentation. Surface levels of IFN α/ß receptor 1, endocytosis of bovine serum albumin-fluorescein 5 (6)-isothiocyanate, signal transducer and activator of transcription (STAT) phosphorylation, and real-time PCR of IFN-stimulated genes were assessed in the murine fibroblast cell line L929. In vivo experiments were performed to characterize the effect of simvastatin on the MVA-induced innate immune response and on the antitumor effect of MVA-based antitumor vaccines in B16 melanoma expressing ovalbumin (OVA) and Lewis lung carcinoma (LLC)-OVA tumor models. RNAseq analysis, depleting monoclonal antibodies, and flow cytometry were used to evaluate the MVA-mediated immune response. RESULTS: In this work, we identified commonly prescribed statins as potent IFNα pharmacological inhibitors due to their ability to reduce surface expression levels of IFN-α/ß receptor 1 and to reduce clathrin-mediated endocytosis. Simvastatin and atorvastatin efficiently abrogated for 8 hours the transcriptomic response to IFNα and enhanced the number of dendritic cells presenting an OVA-derived peptide bound to major histocompatibility complex (MHC) class I. In vivo, intraperitoneal or intramuscular administration of simvastatin reduced the inflammatory response mediated by peritumoral administration of MVA and enhanced the antitumor activity of MVA encoding tumor-associated antigens. The synergistic antitumor effects critically depend on CD8+ cells, whereas they were markedly improved by depletion of CD4+ lymphocytes, T regulatory cells, or NK cells. Either MVA-OVA alone or combined with simvastatin augmented B cells, CD4+ lymphocytes, CD8+ lymphocytes, and tumor-specific CD8+ in the tumor-draining lymph nodes. However, only the treatment combination increased the numbers of these lymphocyte populations in the tumor microenvironment and in the spleen. CONCLUSION: In conclusion, blockade of IFNα functions by simvastatin markedly enhances lymphocyte infiltration and the antitumor activity of MVA, prompting a feasible drug repurposing.


Cancer Vaccines/therapeutic use , Genetic Vectors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Interferon Type I/antagonists & inhibitors , Vaccinia virus/drug effects , Animals , Cancer Vaccines/pharmacology , Disease Models, Animal , Female , Genetic Vectors/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mice
15.
J Clin Invest ; 131(14)2021 07 15.
Article En | MEDLINE | ID: mdl-34061776

Autoantibodies against IFN-α and IFN-ω (type I IFNs) were recently reported as causative for severe COVID-19 in the general population. Autoantibodies against IFN-α and IFN-ω are present in almost all patients with autoimmune polyendocrine syndrome type 1 (APS-1) caused by biallelic deleterious or heterozygous dominant mutations in AIRE. We therefore hypothesized that autoantibodies against type I IFNs also predispose patients with APS-1 to severe COVID-19. We prospectively studied 6 patients with APS-1 between April 1, 2020 and April 1, 2021. Biobanked pre-COVID-19 sera of APS-1 subjects were tested for neutralizing autoantibodies against IFN-α and IFN-ω. The ability of the patients' sera to block recombinant human IFN-α and IFN-ω was assessed by assays quantifying phosphorylation of signal transducer and activator of transcription 1 (STAT1) as well as infection-based IFN-neutralization assays. We describe 4 patients with APS-1 and preexisting high titers of neutralizing autoantibodies against IFN-α and IFN-ω who contracted SARS-CoV-2, yet developed only mild symptoms of COVID-19. None of the patients developed dyspnea, oxygen requirement, or high temperature. All infected patients with APS-1 were females and younger than 26 years of age. Clinical penetrance of neutralizing autoantibodies against type I IFNs for severe COVID-19 is not complete.


Autoantibodies/immunology , COVID-19/complications , COVID-19/immunology , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Polyendocrinopathies, Autoimmune/complications , Polyendocrinopathies, Autoimmune/immunology , SARS-CoV-2 , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Autoantibodies/blood , Female , Humans , In Vitro Techniques , Interferon-alpha/antagonists & inhibitors , Interferon-alpha/immunology , Male , Polyendocrinopathies, Autoimmune/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Severity of Illness Index , Transcription Factors/genetics , Virus Replication/immunology , Young Adult , AIRE Protein
16.
J Virol ; 95(13): e0026621, 2021 06 10.
Article En | MEDLINE | ID: mdl-34110264

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. While previous studies have shown that several SARS-CoV-2 proteins can antagonize the interferon (IFN) response, some of the mechanisms by which they do so are not well understood. In this study, we describe two novel mechanisms by which SARS-CoV-2 blocks the IFN pathway. Type I IFNs and IFN-stimulated genes (ISGs) were poorly induced during SARS-CoV-2 infection, and once infection was established, cells were highly resistant to ectopic induction of IFNs and ISGs. Levels of two key IFN signaling pathway components, Tyk2 and STAT2, were significantly lower in SARS-CoV-2-infected cells. Expression of nonstructural protein 1 (NSP1) or nucleocapsid in the absence of other viral proteins was sufficient to block IFN induction, but only NSP1 was able to inhibit IFN signaling. Mapping studies suggest that NSP1 prevents IFN induction in part by blocking IRF3 phosphorylation. In addition, NSP1-induced depletion of Tyk2 and STAT2 dampened ISG induction. Together, our data provide new insights into how SARS-CoV-2 successfully evades the IFN system to establish infection. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19, a serious disease that can have a myriad of symptoms from loss of taste and smell to pneumonia and hypercoagulation. The rapid spread of SARS-CoV-2 can be attributed in part to asymptomatic transmission, where infected individuals shed large amounts of virus before the onset of disease. This is likely due to the ability of SARS-CoV-2 to effectively suppress the innate immune system, including the IFN response. Indeed, we show that the IFN response is efficiently blocked during SARS-CoV-2 infection, a process that is mediated in large part by nonstructural protein 1 and nucleocapsid. Our study provides new insights on how SARS-CoV-2 evades the IFN response to successfully establish infection. These findings should be considered for the development and administration of therapeutics against SARS-CoV-2.


Interferon Type I/antagonists & inhibitors , SARS-CoV-2/metabolism , Signal Transduction , Viral Nonstructural Proteins/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/metabolism , HEK293 Cells , Humans , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Phosphoproteins/metabolism , SARS-CoV-2/pathogenicity , STAT2 Transcription Factor/metabolism , TYK2 Kinase/metabolism , Vero Cells
17.
Mol Med Rep ; 24(1)2021 Jul.
Article En | MEDLINE | ID: mdl-33955508

Accumulating data has indicated that host microRNAs (miRNAs/miRs) play essential roles in innate immune responses to viral infection; however, the roles and the underlying mechanisms of miRNAs in influenza A virus (IAV) replication remain unclear. The present study examined on the effects of miRNAs on hemagglutinin (H)1 neuraminidase (N)1 replication and antiviral innate immunity. Using a microarray assay, the expression profiles of miRNA molecules in IAV­infected A549 cells were analyzed. The results indicated that miR­221 was significantly downregulated in IAV­infected A549 cells. It was also observed that IAV infection decreased the expression levels of miR­221 in A549 cells in a dose­ and time­dependent manner. Functionally, upregulation of miR­221 repressed IAV replication, whereas knockdown of miR­221 had an opposite effect. Subsequently, it was demonstrated that miR­221 overexpression could enhance IAV­triggered IFN­α and IFN­ß production and IFN­stimulated gene expression levels, while miR­221­knockdown had the opposite effect. Target prediction and dual luciferase assays indicated that suppressor of cytokine signaling 1 (SOCS1) was a direct target of miR­221 in A549 cells. Furthermore, knockdown of SOCS1 efficiently abrogated the influences caused by miR­221 inhibition on IAV replication and the type­I IFN response. It was also found that the miR­221 positively regulated NF­κB activation in IAV­infected A549 cells. Taken together, these data suggested that miR­221­downregulation promotes IAV replication by suppressing type­I IFN response through targeting SOCS1/NF­κB pathway. These findings suggest that miR­221 may serve as a novel potential therapeutic target for IAV treatment.


Influenza A Virus, H1N1 Subtype/immunology , Interferon Type I/antagonists & inhibitors , MicroRNAs/genetics , MicroRNAs/immunology , Suppressor of Cytokine Signaling 1 Protein/metabolism , Virus Replication/genetics , A549 Cells , Down-Regulation , Gene Knockdown Techniques , Humans , Immunity, Innate , Influenza, Human/virology , Interferon Type I/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein/genetics
18.
Vet Microbiol ; 257: 109096, 2021 Jun.
Article En | MEDLINE | ID: mdl-33940459

Receptors for activated C kinase 1 (RACK1) could competitively combine with mitochondrial antiviral signaling protein (MAVS) to inhibit the type I interferon (IFN) signaling pathway during viral infection in vitro. However, whether RACK1 can degrade MAVS to enhance viral replication is still unknown. In this study, we found that bovine epidemic fever virus (BEFV) infection triggered the expression of RACK1. Overexpression of RACK1 promoted BEFV replication, while knockdown of RACK1 inhibited the replication of BEFV. Further research showed that RACK1 inhibited the type I IFN signaling pathway during BEFV infection by degrading MAVS, and RACK1 degraded MAVS via the ubiquitin-proteasome system. Mechanistically, RACK1 up-regulated the expression of E3 ubiquitin ligase STIP1 homology and U-box containing protein 1 (STUB1), thereby promoting the ubiquitination and degradation of MAVS. In addition, RACK1 degraded MAVS by enhancing the interaction between STUB1 and MAVS but not via its interaction with STUB1. Overall, our study reveals a novel mechanism by which RACK1 inhibits the type I IFN signaling pathway to BEFV infection through degradation of MAVS, thereby promoting viral infection. These findings provide a new perspective for the MAVS degradation regulated by RACK1.


Adaptor Proteins, Signal Transducing/metabolism , Ephemeral Fever Virus, Bovine/physiology , Immunity, Innate , Receptors for Activated C Kinase/genetics , Ubiquitin-Protein Ligases/genetics , Up-Regulation , Virus Replication/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Cattle , Cell Line , Cricetinae , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , HEK293 Cells , Humans , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Signal Transduction/immunology
19.
Dev Comp Immunol ; 122: 104044, 2021 09.
Article En | MEDLINE | ID: mdl-33915176

As a member of inhibitory κB family (IκB) family, IκBα is best-characterized and plays a central negative feedback regulator of NF-κB pathway in mammals, but the information about IκBα in the regulation of immune responses is still limited in teleost fishes. In the present study, the full-length cDNA of an IκBα homologue, AjIκBα, was cloned by 5' and 3' SMART RACE from Japanese eel, and its characteristics of expression in response to various PAMPs and A. hydrophila infection were investigated both in vivo and in vitro using quantitative real-time polymerase chain reaction (qRT-PCR). In addition, the subcellular localization of AjIκBα GFP fusion protein and the induction of AjIκBα alone or co-expression with Japanese eel IKKα (AjIKKα) in the activation of NF-κB, type I IFN and AP1 performed using Dual-Glo luciferase assay system were also detected. Sequence comparison analysis revealed that AjIκBα has typical conserved domains, including the N-terminal conserved degradation motif, the ankyrin repeats, and the C-terminal PEST domain. The predicted three-dimensional structure of AjIκBα is similar to that of human IκBα. qRT-PCR analysis revealed a broad expression for AjIκBα in a wide range of tissues, with the highest expression in the spleen, followed by intestine, liver, gills, skin, kidney, and with a lower expression in the heart and muscle. The AjIκBα expressions in the kidney, spleen, and especially in liver were significantly induced following injection with Gram-negative bacterial component LPS, the viral mimic poly I:C and Aeromonas hydrophila infection. In vitro, the AjIκBα transcripts of Japanese eel liver cells were significantly enhanced by the treatment of LPS, poly I:C, or the stimulation of different concentration of Aeromonas hydrophil. Luciferase assays demonstrated that not only could the AjIκBα expression significantly decrease the activation of NF-κB, AP1, and IFNß-responsive promoters in HEK293 cells and EPC cells, but also robustly inhibited the activity of these three promoters in HEK293 cells or NF-κB and AP1-responsive promoters in EPC cells induced by AjIKKα. Additionally, subcellular localization studies showed that AjIκBα was evenly distributed in the cytoplasm and nucleus both in HEK293 cells and EPC cells under natural state. AjIκBα was found to aggregate into spots in the cytoplasm and nucleus stimulated by LPS or mostly aggregate into nucleus with the treatment of poly I:C in HEK293 cells, whereas the elevated expression of AjIκBα was observed in the cytoplasm of EPC cells upon the stimulation of poly I:C. These results collectively indicated that AjIκBα function as an important negative regulation in innate immunity of host against antibacterial and antiviral infection likely via the inhibition of the activation of NF-κB, AP1, and type I IFN signaling pathways.


I-kappa B Kinase/antagonists & inhibitors , Immunity, Innate/immunology , Interferon Type I/antagonists & inhibitors , NF-KappaB Inhibitor alpha/metabolism , Transcription Factor AP-1/antagonists & inhibitors , Aeromonas hydrophila/immunology , Amino Acid Sequence , Anguilla/metabolism , Animals , Cell Line , Cloning, Molecular , Enzyme Activation/physiology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/genetics , Fish Proteins/metabolism , Gram-Negative Bacterial Infections/immunology , HEK293 Cells , Humans , Lipopolysaccharides/immunology , NF-KappaB Inhibitor alpha/genetics , NF-kappa B/antagonists & inhibitors , Poly I-C/immunology , Promoter Regions, Genetic/genetics , Protein Structure, Tertiary , Signal Transduction/physiology
20.
Mol Immunol ; 135: 28-35, 2021 07.
Article En | MEDLINE | ID: mdl-33857816

Type I interferon (IFN-I) plays pivotal roles in defense against viral infection. HSV-1 has evolved multiple strategies to evade IFN-I antiviral response. In this study, we revealed a new mechanism that HSV-1-encoded ICP0 regulates the host deubiquitinase BRCC36 to inhibit IFN-I antiviral response. We found that HSV-1 infection rapidly downregulates BRCC36 proteins at the early stage of infection. Further studies demonstrated that HSV-1-encoded ICP0 induces K48-linked polyubiquitination and degradation of BRCC36. Importantly, HSV-1-induced BRCC36 degradation promotes downmodulation of IFN-I receptor IFNAR1, thus restricting host IFN-I antiviral response to facilitate HSV-1 early infection. These findings uncover a novel immune evasion mechanism exploited by HSV-1 and could provide potential strategies for anti-HSV-1 therapy.


Deubiquitinating Enzymes/metabolism , Herpesvirus 1, Human/immunology , Immediate-Early Proteins/metabolism , Immune Evasion/immunology , Interferon Type I/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line, Tumor , Chlorocebus aethiops , Down-Regulation , HEK293 Cells , HeLa Cells , Hep G2 Cells , Herpes Simplex/immunology , Herpes Simplex/therapy , Humans , Interferon Type I/immunology , Mice , RAW 264.7 Cells , Receptor, Interferon alpha-beta/metabolism , Ubiquitination/physiology , Vero Cells
...